Q-1

C. U. SHAH UNIVERSITY Winter Examination-2021

Subject Name: Complex Analysis

Su	ect Code: 4SC05COA1 Branch: B.Sc. (Mathematics)	
Se	ster: 5 Date: 16/12/2021 Time: 11:00 To 02:00 Marks	s: 70
Ins	 ctions: Use of Programmable calculator & any other electronic instrument is prohibited. Instructions written on main answer book are strictly to be obeyed. Draw neat diagrams and figures (if necessary) at right places. Assume suitable data if needed. 	
a)	Attempt the following questions: a function $u(x, y)$ is said to be harmonic if and only if a) $u_{xx} + u_{yy} = 0$ (b) $u_{xx} - u_{yy} = 0$ (c) $u_{xy} + u_{yx} = 0$ (d) None	(
b)	What is the value of <i>m</i> for which $2x - x^2 + my^2$ is harmonic?	
c)	olar form of Cauchy- Riemann equation is a) $u_r = rv_\theta$ and $v_r = -r u_\theta$ (b) $u_r = \frac{1}{r}v_\theta$ and $v_r = -\frac{1}{r}u_\theta$	
	$v_r = \frac{1}{r} v_{\theta}$ and $v_r = -r u_{\theta}$ (d) None of these	
I)	$f(z) = \overline{z}$ then f is differentiable	
e)	(c) everywhere (d) only at $z = 1$ (c) everywhere (d) only at $z = 1$ (c) everywhere (d) only at $z = 1$ (c) everywhere (d) only at $z = 1$ (b) imaginary part of $f(z)$ is analytic (c) everywhere (d) only at $z = 1$ (b) imaginary part of $f(z)$ is analytic	ic
)	(d) None of these imple curve is also called (b) Multiple curve (c) Integral curve (d) None	
()	Which of the following are fixed points of $w = \frac{2z+6}{z+7}$.	
)	et $W = \frac{az+b}{cz+d}$ then W is mobius transformation if	
)	a) $ad - cb = 0$ (b) $ad - cb \neq 0$ (c) $ad + cb = 0$ (d) None $f(z) = z + \overline{z}$ then $f(z)$ is	
)	a) Purely real (b) Purely imaginary (c) Zero (d) None $f(z) = u + iv$ is an analytic function of complex variable $z = x + iy$, and u hen $u = _$	y = xy
	a) $x^2 + y^2$ (b) $x^2 - y^2$ (c) $\frac{1}{2}(x^2 + y^2)$ (d) $\frac{1}{2}(x^2 - y^2)$	
())	Define: Analytic function tate Liouville's theorem.	ago 1 of 2

Attempt any four questions from the Q-2 to Q-8

Q-2	ipt ai	Attempt all questions	(14)
	(a)	Show that $f(z) = \begin{cases} \frac{x^3(1+i)-y^3(1-i)}{x^2+y^2} ; z \neq 0\\ 0 & z = 0 \end{cases}$ is continuous at origin.	05
	(b)	Find analytic function $f(z) = u + iv$ such that $u - v = x + y$.	05
	(c)	Evaluate $\lim_{z \to -i} f(z)$, where $f(z) = \begin{cases} \frac{z^2 + 3iz - 2}{z+i}, z \neq -i \\ 5, z = -i \end{cases}$, $z = -i$	04
Q-3		Attempt all questions	(14)
-	(a)	Sate and prove Cauchy's integral formula.	07
	(b)	Show that $u = \cos x \cos hy$ is harmonic, also find its harmonic conjugate.	07
Q-4		Attempt all questions	(14)
	(a)	State and prove C-R equation in cartesian coordinates.	07
	(b)	Suppose $f(z) = u + iv$, $z_0 = x_0 + iy_0$ and $w_0 = u + iv$ then $\lim_{z \to z_0} f(z) = w_0$ if	05
	(\mathbf{a})	and only $\lim_{(x,y)\to(x_0,y_0)} u(x,y) = u_0 f$ and $\lim_{(x,y)\to(x_0,y_0)} v(x,y) = v_0$.	02
	(0)	If $u(x, y) = \frac{x(1+x)+y}{(1+x)^2+y^2}$, $v(x, y) = \frac{y}{(1+x)^2+y^2}$ then find $f(z)$ in terms of z.	02
Q-5		Attempt all questions	(14)
	(a)	Evaluate: $\int_C \frac{dz}{z^2+9}$ where $C: z = 5$.	05
	(b)	Evaluate $\int_C z^2 dz$ where C is the path joining the points $z = 1 + i$ to $z = 2(1 + 2i)$	05
		along the straight line joining $1 + i$ to $2(1 + 2i)$.	
	(c)	State and prove ML- inequality.	04
Q-6		Attempt all questions	(14)
	(a)	State and prove Cauchy's inequality.	07
	(b)	State Cauchy-Goursat theorem and hence evaluate $\int_{\mathcal{C}} \frac{z^3 + z^2 + z + 1}{z(z-1)^2} dz$, $\mathcal{C}: z \le 2$.	07
Q-7		Attempt all questions	(14)
	(a)	Let $f(z) = u + iv$ be analytic in domain D then prove that real component u and	05
	<i>—</i> .	imaginary component v are harmonic function.	
	(b)	Prove that $\left \int_{C} \frac{\log z}{z} dz\right \leq 2\pi \left(\frac{\pi + \log R}{R}\right)$ where <i>C</i> is circle $ z = R$.	05
	(c)	find $\int_C (\bar{z})^2 dz$ where <i>C</i> is part of line which we can obtain from the point $z = 0$ to $z = 2 + i$	04
0-8		Attempt all questions	(14)
χV		A MARINE AN ANDRIVIES	(**)

(a) Find the bilinear transformation which maps points $z = 0, 1, \infty$ into w = -5, -1, 3 05

respectively.

- (b) Find image of |z 3i| = 3 under the mapping w = ¹/_z.
 (c) Transform the curve x² y² = 4 under the mapping w = z². 05
- 04

